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Abstract 

In this paper, we use categorical disintegrations as an indexing notion. The program is to 
set up a framework for abstract indexing by measure spaces. We construct a pseudo-functorial 
pullback-like, though not universal, substitution and exhibit the Beck condition. Finally, we use 
this to understand the direct integral of Hilbert spaces in the context of indexed category theory. 
@ 1998 Elsevier Science B.V. All rights reserved. 
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1. Introduction 

The direct integral of Hilbert spaces s” H(x)dp(x) has a measure-indexed aspect 

and a coproduct-like aspect. We would like to interpret this construction in the realm of 

indexed category theory to put it on a firm categorical footing. It is appropriate to set 

up a definition of abstract measurable family of Hilbert spaces so that s” becomes an 

indexed fimctor. Ideally, this would then be part of an indexed adjunction and would 

exhibit a universal property analogous to that for coproducts. It was noted in [6] that 

arriving at a left adjoint for an appropriate fimctorial notion of constant families d is 

too ambitious. This is not a serious flaw, however, because we can approximate the 

classical indexed category theory of [l] or [4] quite well. In [6], a framework was set 

up where a measurable Hilbert family was interpreted as a Hilbert space object in a 

certain topos. In this paper, we provide another framework where a measurable Hilbert 

family is interpreted in the context of slice categories. 

Of fundamental importance in the indexing of sets by sets is the equivalence of cate- 

gories &t/l 2 &t’ for I E &t. We explore a similar idea appropriately translated into 

a measure theoretic context as an approach to the problem of understanding indexing 
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by measure spaces. The basic notion of measurable family will be a measure space 

over the measure space X. 

In [5], we introduced two categories of measure spaces of finite measure relevant to 

indexing: MOR and Disint. The morphisms of MOR are measurable functions whose 

inverse image preserves null sets. These are called measure zero rejecting or MOR. 
The morphisms of Disint, called disintegrations, are measurable functions together with 

a family of measure structures on the fibres. There are some technical axioms imposed 

but the essence is to encapsulate the idea in Fubini’s theorem: the measure of a set in 

the plane is obtained by integrating the measures of the fibres of that set. Disintegrations 

have a built-in self-indexed nature and we use this for our measure spaces over X. The 

premise is that an object of Disint/X represents a good notion of X-family of measure 

spaces. For practical reasons (i.e. applications to the direct integral), m will be the 

base category for abstract indexing. 

In this paper, we describe a pullback-like substitution to provide a good change of 

base for measure spaces, exhibit the Beck condition with respect to composition, and 

provide an application by discussing a framework for J”. 

It is well-known that for a topological space X, sheaves on X correspond to local 

homeomorphisms over X. The situation in measure theory is more complicated. The 

notions of measurable sheaf of [6] and local homeomorphism here seem to be quite 

different. It is not clear yet which is better for indexing purposes (in some sense, 

they are both equally good when X is a topological space). Indeed, this makes the 

situation in measure theory more interesting: there seem to be at least two non-trivial 

and non-equivalent indexing ideas. 

2. Measure space background 

Notation. Measurable spaces are denoted by ordered pairs, (X,&), (Y, 9), etc., con- 

sisting of a set and a o-algebra of subsets of that set. Mble denotes the category of 

measurable spaces and measurable functions. Measure spaces will be denoted by or- 

dered triples, (X, ~2, p), (Y, ~3, v), etc., the first two items forming a measurable space 

and the third being a measure. 

We will assume that singletons are measurable and that measure spaces have finite 

measure. These are usually called finite measure spaces. We do not assume complete- 

ness of measure. In particular, the product of two measure spaces (see the example 

below) is formed as the Cartesian product of the spaces with o-algebra generated by 

the measurable rectangles and product measure. This measure is not completed. 

Definition 2.1. A measurable function, (X, &, n) ’ - (Y, W, v) is called measure zero 
rejecting or simply MOR if v(B) = 0 + ~(f-l(B)) = 0. MOR is the category whose 

objects are finite measure spaces and whose morphisms are measure zero reflecting. 
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Definition 2.2. An object of Disint is a finite measure space. A morphism between two 

objects, (X, &, p) and (Y, 99, v), is called a disintegration. It consists of an (X, &) L 

(Y,B) E Mble and a family (X,, &y,pLy)yEr of finite measure spaces, where X, := 

f-‘(y) and &y = {A n f-‘(y) 1 A Ed’} subject to the axioms: 

1. tlA E &, the map y H /+&4 n f-‘(y)) is measurable and bounded and 

2. v/t E dr$, ~(4 = Jr ,+(A n f-‘(y)) dv(y). 

A disintegration is denoted by (X, JXZ, ,U) a (Y, B, v). The identity on (X, d, ,u) is 

defined as (X, d, p) (Ix,fi! (X, &‘, p) w h ere lx is the identity function and z, is counting 

measure on the discrete a-algebra on {x} and for (X, ,ra2,~) w (Y, 99, v) 3 (Z, %?, p), 

the composite is defined as (X, &,p) (* (Z,%‘,p) where 

g,(E) := 
s 

pLy(E n f-‘(y)) dv,(y) for E E CC?= = {A n f-‘g-‘(z) 1 A E d}. 
c’(z) 

For an extensive list of examples and basic properties, see [5]. Examples of disin- 

tegrations are also included in the substitution examples of Section 3.2. As alluded to 

in the Introduction, the paradigmatic example is: 

Example. Let (X, &, p) and (Y, 98, v) be two finite measure spaces and consider the 

projection onto the first factor, 

where &@.% is the a-algebra generated by measurable rectangles and p-‘(x) = {x} x Y. 

Now, (JS!CWQ = {Dnp-‘(x) 1 DE &&X193} = {{x}xB 1 BEG}. Define (~xv),({x}x 

B) := v(B) and extend (but we may sometimes abuse notation and write (11~8 vX(D f? 

p-‘(x)) := v(D,) with D, considered as an element of a). Axiom 2 is a special case 

of Fubini’s theorem. 

Some useful results from [5,6] are collected in the following: 

Proposition 2.1. (i) &lBJ and Disint have 

(a) an initial object given by (0, {0},0), 

(b) a terminal object given by (1,2,counting), 

(c) binary coproducts (I, Oe, u) + (Y, 59, v) = (X + Y, ~4 + 59, p + v) (the o-algebra 

consists of sets of the form A + B and (u + v)(A + B) = u(A) + v(B)), and 

(d) these coproducts are disjoint. 

(ii) m and Disint are monoidal categories. The unit is the terminal object and 

the @ is the usual product of measure spaces. 

(iii) There is a full functor !!&t, -% Disint which puts a discrete measure space 

structure on a finite set. 

(iv) (f, ,uy) E Disint + f E MOR. 
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Remark. ( 1) A MOR does not necessarily have a disintegration structure on it. 

(2) MOR does not have products. 

3. Substitution 

3.1. Definition 

In this section, we introduce a notion of substitution of a disintegration along a MOR. 

Consider a diagram: 

with 4 E MOR, (f, vJ) E Disiut. We will describe Z, g, r”, etc., and exhibit (g, pxl) as 

a disintegration and Y as a MOR to establish a pseudo-functorial change of base that 

satisfies the Beck condition with respect to composition. We will think of g as “the” 

substitution of the disintegration “f” along the MOR 4. 

(Z,%), g, and r are formed as the pullback of f along 4 in Mble after an ap- 

propriate forgetting of measures. Thus, Z = xr,EX, Y+,,o, where Y$cxl) := f-t (4(x’)) 

(in general, Tk denotes the fibre over k when no confusion can arise). A typical ele- 

ment of Z is (y, x’) where x’ E X’ and y E Yb(,/ 1. The projections are g(y,x’) =x’ and 

r(~ x’) = y. , Thus 9 g-‘(x’) = Y +(x/) x {x’} E Ye and, for A’ E ~8, 

g-l (A’) = c K,, where K,I = 
yw 1, x'EA', 

X’EX’ 

8 
3 x’ $ A! 

On the other hand, (F’(B))~/ =r-l(B) n g-‘(x’)=B n f-‘(4(x’)) x {x’}. V is the 

a-algebra generated by g- ’ (A’), Y-’ (B) for A’ E ucdz’ and B E $8. 

Lemma 3.1. Every C E 99 is decomposable as 

x c,/ := x C n g-‘(d) 
x’ EX’ X’EX’ 

with c,/ E s34txlj x (2) = {B n j+(&d)> x {XI} 1 B ~8’). 

Proof. Decomposable C’s form a a-algebra containing g-‘(A’) and r-‘(B). Cl 

Thus, %xf = {C n g-l (x’) 1 C E %?} C &Q(~J) x {x’} for each x’ E X’. The other con- 

tainment holds as well since for B n f-‘(4(x’)) E @4(xr~, (B tl f-‘(4(x’))) x (x’) = 
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r-‘(B) ng-‘(x’) E qxl. And so, a typical element C,r E %?Xt may be written as & x {x’} 

with & E Bd(Xl). Define 

As with the product example above, we will abuse notation (identify B n f-‘(&x’))x 
{x’} with B n f-‘(4(x’)) and v,#,(~!) 18 +I, where r, I is the counting measure on {x’}, 

with ~b(~f)) to write 

Lemma 3.2. For C E %?,x H v~(~~)(C,, ) is ( measurable and) integrable. 

Proof. Let C = g-l@‘) n r-‘(B). Then 

“4(x+(&A r- r-*(B))& = q(xo(B n f-*(+(x’))). XK. 

The second factor of the right-hand side is integrable since p’(A’)<co. The first factor 

is integrable since it is the composite of v,(B fl f-‘(x)), which is positive and inte- 

grable, and 4(x’), which is MOR (to show that the composite of a positive, integrable 

function with a MOR function is integrable, proceed through cases from step functions, 

through simple functions, to positive measurable functions). In particular, for C = Z, 

v~(~~)(Z,~) is integrable. For any C, C,J C Z,, so we need only show measurability 

but this is straightforward by exhibiting measurability remains valid under o-algebra 

operations on the g-l@‘) n r-‘(B)‘s. 0 

Lemma 3.3. p is a jinite measure on %Y 

Proof. For example, finiteness follows from Lemma 3.2. The rest is likewise straight- 

forward. cl 

Proposition 3.1. Gioen f E Disint and 4 E= then (g, pxf ) E Disint where px/(Cx~ ) := 
v+T,(C~,) (again, identifv %‘x/ with %?b~,). 

Proof. We have shown that ,oXl is measurable and bounded. Axiom 2 follows by 

construction: 

Finally, we note that: 

Proposition 3.2. Y E m. 
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Proof. Let B E 9J have v(B) = 0. We want to show &r-‘(B)) = 0. Recall, 

PG--‘W) = I v++ n f%(x’Wd(x’) 
X’ 

_. -. s &(4(x’>) d&x’), 
X’ 

where &(x) = v,(B n f-‘(x)). Now, 0 = v(B) = s, v,(B n f-‘(x)) dp(x), so we need 

only establish the following: 

Lemma 3.4. For X’ LX E m and X & R>’ E m, 

s t(x) dp(x) = 0 + 
s 

(t 0 4)(x’) d$(x’) = 0. 
x X’ 

Proof. Let t proceed through cases: characteristic function, simple function, then pos- 

itive, measurable function. q 

3.2. Examples 

In this section, we provide a number of examples of substitution. 

follow the same basic format. Given a pair of morphisms 

The examples all 

with (f, v,) a disintegration and 4 a MOR, f and 4 are varied to produce the examples 

(i.e., g and r are described). 

Example 1. Product: 
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(1,-a, z) denotes a one point measure space with element Ir, discrete a-algebra, and 

counting measure. In this case, 

z= c Y*= c Y=YxX’. 

x’ EX’ x’ EX’ 

Furthermore, 

g-‘(k) = c K,, = c Y = Y x A’,r-‘(B) 

x’ a- x’ EA’ 

={(y,x’)lyE~n!r -‘(!xl(x’))} = B x x’, 

and %? = 49 @ J$‘. Let C E 98 I% ~8, then by Fubini’s theorem, C,/ = C n {(JJ, t) 1 y E Y, 

t=x’}~c~49 and 

v!,,cx~,(GO d$(x’) = 1 v(G) > d$(x’)(v @ P)(C) 
X’ 

(as usual, some identifications have been made). 0 

Remark. Z is a pullback object in &t and (5%) is a pullback object in Mble but 

the above substitution square is not universal in m. The diagonal (Y, 29) + (Y x Y, 

B@B), which is not in m, manifests itself as a “universal arrow” of a special case 

of Example 1 with (A?, ~4’) = (Y, B) and (X, d, p) = (1, 9, 1). 

Example 2. Terminal object: 

Here, g-t@‘) = Cx,EX, K,I E Cn,EA, 1 %A’. Z = xXIEX, 1 g!x’ so that V g d’. Fur- 

thermore, 

and so p = p’. In this example, ‘%_, 2 (8, {x’}} and pX/ = the counting measure. Thus, 

(g, pX/) is the identity (up to isomorphism). 

In the rest of the examples, calculations are similar to those above and are omitted. 
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Example 3. Identity disintegration: 

In this case, Z EX’, %? E A?‘, and 

~(4 = P = j-, ~c,w,(W>) G’G’) = / 1 dd(x’) = d@‘). 
A’ 

Example 4. Identity MOR: 

In this case, Z= Y, %‘=B;, and 

Example 5. Intersection: Let A0 and Al be two measurable subsets of (X, d, p). 

Here, ZE!Al nAo, %?=&I A,“Ao={AnAlnAoIA~d},andp(AnA1)=~l(AnA1)= 

p(AnA,) and P(AnAo)=~o(AnAo)=11(AnAo). 
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Example 6. Measure zero fibres: 

Suppose I =x0 EX which is not an atom. Then Z = C* Y ” Y and g-‘(k) = Z 

so %?=o(r-l(B))=@. For each BEW, P(B)=Jv,,(Bnf-‘(xo))dO=O. There is no 

“picking an element map” in MOR (( 1,2, counting) + (X, -9e, p) is not MOR unless the 

element is an atom). Thus, fibres have measure zero (as they should). 

3.3. Pseudo-finctoriality 

Let (@)* denote substitution along 4. Example 4 above shows that l* ” 1. In this 

section, we will show (@)* ” $*4*. Consider the diagram 

with (g, pX/ ), (h, & ), and (k, QJ~ ) instances of substitution. 

W g T as sets (in &t, these are just pullbacks). We will have use of the ex- 

plicit form of the isomorphism a and its inverse b: W = {( y,x”) / c$$(x”) = f(y)}, 

T = {(zJ”) 1 I+&“) = x’ = g(y,x’)} = {((YJ’),~“) I $(x”) = x’ and 4(x’) = f(y)}, 

W&T is (y,x”)~(y,$(x”),x”) and Tb’W is (y,x’,x”)w(y,x”). 

The following proposition shows that a is a measurable equivalence (this means 

a and b are measurable and a is measure preserving: q(a-‘(D)) =6(D) which implies 

b is measure preserving; see [5]). 

Proposition 3.3. (1) (W,&)A(T,LS) and (T,9) b=a-’ ( W, &) are measurable. 

(2) q(a-‘(D)) = 6(D), VD E 9 and &b-‘(E)) = q(E), for each E E d 
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Proof. (1) For D=~-‘(A”)E&~, K~/?~(A”)=~-‘(A”)E~. The case D=s-‘C 

breaks down into subcases: subcase C = r-‘(B): a-‘s-‘r-‘(B) = u-‘(B) E 6; subcase 
C = g-Q’): &&-‘(A’) = a- lK1t/-l(A’)=k-‘~-l(A’)E& since I+-i(A’) 

Next, note that inverse image preserves o-algebra operations. The proof for b is similar. 

(2) The basic case is E = ,-‘(A”) n u-‘(B): 

G(b(k-l(A”)nu-l(B)))=G(b-‘k-l(A”)nb-lu-l(B)) 

= d(hP(A”) r-&r-‘(B)) 

=I x,, r%w(r -l(B)ng-l(~(x”))).XA/~d~” 

=I P&$(x+ n f-‘(h&“)>) . XA” G” 
X” 

= t&k-$4”) n u-‘(B)). 0 

Remark. We have actually shown a stronger result than needed for our purposes here. 

In fact, a is a measure-preserving isomorphism which implies an isomorphism in MOR 

which implies (see [5]) an isomorphism in Disint. 

4. Substitution along a disintegration 

4.1. Characterization 

In this section, we will assume 4 is also endowed with a disintegration structure and 

discuss substitution of a disintegration along a disintegration. Our goal is to prove that 

Y is also equipped with a disintegration structure and a symmetry result: for 4 E Disint, 

f*(4) and 4*(f) are measurably equivalent. We begin by giving a characterization 

of p that, fibrewise, it looks like the product measure. Consider 

with (4, pi) E Disint. Let 0, denote the composite of cl: and pX/. Then 

&(Cn&-t(x))= ~_,i*~h/(Cng-l(xl))d~~(x~). 

We require a technical lemma (whose proof is straightforward). As usual, K := 

f-‘(x);&! :=4-‘(x). 
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Lemma 4.1. (a) g-‘&‘(x) = K x Xi, 

(b) g-‘(A’)nr-‘(B)n(Y, x JLj)=(BnY,) x (A’fM;), 

(c) g-l(A’n4-l(x))= r, x (A’nx;). 

Proposition 4.1. For CEV, p(C) = &(vx @ &)(C n Y, x Xi) d&c). 

Proof. Since 0, is a disintegration, 

P(C) = s &(Cng-14-1(x))d&)= IS px4C n g-‘@‘)I d&x’) dW. x 2, d-‘(x) 
For C=g-l(A’)nr-l(B), pxr(Cng-1(x’))=~4V)(Bnf-1(qb(~‘))).~Ar, SO 

vqtw)(B n f%(x’>>> . id&‘) d&) 

= J v,(B n f-l(4) 
x s ~_,( 

x 

) x.4/&‘) +4X) 

= v,(Bnf-1(n)).&A’n4-1(X))d,@) 
J’ X 

=/- v,(BnY,).~~L:(A’nx:)d~u(x) 
x 

= x(~X~~~)(g-l(A’)nr-l(B)n(YX xXi)>d&). 0 
s 

4.2. r is a disintegration 

Next, we show that r is part of a disintegration and the following diagram commutes: 

Write (4g,&) and cfr, yX) for the composites. G?$ := (y} x JZ$(~) (for example, 

r-‘(B)flr-‘(y)=(y) x cj-*(f(y)), if yeB, and g-‘(A’)nr-‘(y)=(y) xA’n 
&f(y))). We define py using &,) in analogy to pX!. py(CnF1(y)) := &,) 

(C rl c$-‘(f(y))) (or better: ~y(g-1(A’)nr-1(y)):=&y~(A’n4-1(f(~))) and 
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,+,(~-l(B)n~-l(y)):=&y~(~-l(f(~))~ xs). Again, that pY is a bounded measur- 

able function of y is exactly the same as for pXl. It remains to show the second axiom 

P(C) = Jr PJC n r-‘(u)) dv(.v). 

Lemma 4.2. For (f, v,) a disintegration and Y A R a positive, measurable function, 

JJ x f-‘(x) 
WY) dvx(y) d/-O) = s, k(y) WY). 

Proof. If k = XB, the right-hand side is Jr xs dv(y) = v(B) and the left-hand side is 

JJ XB~MY)~PL(~)= J v,(Bnf-'(x))d~L(~)=v(B) x f-'(x) x 
by axiom 2. Then proceed from simple functions to positive, measurable functions. 0 

Corollary. S, _l&&(,)(C n 4-‘CfWN dvx(y) @.4x) =J’y~j(y,(C n ~-‘(f(yN) WY). 

Proposition 4.2. J, py( C n r-l ( y)) dv(y) = p(C) (axiom 2). 

Proof. Use the corollary and the proof of Proposition 4.1. For example, suppose C = 

r-‘(B), 

J Py(r-l(B)nr-l(y)>dv(y) = 
Y J y CL;(~)(~~(~(Y)). xs)dv(y) 

= JJ x f-'(x) cc;(,,(~-'(f(v))x~)dv,(y)d~L(X) 

=JJ x f_,( ,~:(~-'(x);c~)dv~(~)d~(~) x 
=JJ ~L:(Bn~-'(~))dv,(y)d~(x) x f-'(x) 
= J x k4B n P(4) (S,,,,,dWf) +4x) 
= x&W 4-‘(x>)~ vx(f-l(xNWx) J 
= J (vx @P;)(K x (Bn~iWA4 

X 

= p(r-l(B)). 0 
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4.3. Symmetry 

Proposition 4.3. In the diagram 

where Z = 4*(f) and T = f *( 4), s(x’, y) := (y, x’) is a measure equivalence. 

Proof. By the characterization above, p(C) = sX(vX @ pi) (C rl Y, x Xi) dp(x) for all 

CE%? and 6(D)= J,(& 8 vX)(DnXi x K)d,u(x) for all DEB. Thus, 6(s-l(C))= 

p(C) and p(s(D))=&D). 0 

5. Composition 

5.1. DeJinition and basic properties 

For a disintegration (X’, ~8, p’) w (X, ~4, p), 

Disint /X’ z Disint /X A-.--.-- 

denotes the precomposition with 4 fimctor (precomposition in the case of m/X 

will be denoted by CT). In general, C: is not left adjoint to $*. Indeed, when 4 is 

! :X’ -+ 1, (4* c;)(X’ LX’) =X’ x X’ -+ X’; the unit at X’ would be the diagonal 

which is not in Disint. However, since 4” is the pullback in m, 

is an adjunction: x4 -I 4’. For that matter, the category whose objects are disinte- 

grations over a fixed measure space and whose morphisms are merely measurable 

functions making the appropriate triangle commute (i.e. the slice category but with 

merely measurable functions as morphisms), also has precomposition by 4 left adjoint 

to substitution along 4. 
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Cy, being a left adjoint, preserves colimits. Two interesting properties of C$ are 

given in the following two propositions: 

Proposition 5.1. CJinitial) = initial. 

Proof. The initial object of Disint/X’ is (0, (8,)O) !x’ (X’,S?,~‘). Composing 

(4, s$,&) gives (0, {8},0) !x (X,d,p), the initial object of Disint/X. 0 

Proposition 5.2. x4 preserves binary coproducts. 

with 

Proof. Let (T, 9, S) ch,a,,! (X’, SF, p’) and (S, %‘, y) (s,yyil (X’, ~8, p’) be in Disint /X’. 

The coproduct of S and T is (S + T, 59 + 63,~ + 6) o,! (X’, ,c4’, p’) with %? + 

z~:={C+DICEV, DEB}, (y+@(C+D):=y(C)+@), and 

(g + h)(t, i) := 
g(t), i= 1, 

h(t), i = 2. 

Note that (‘3 + 9)Xr = %$ + ~3~) and define (y + S),, := ‘yXl + 6,,. 

Composing with (4,~;) gives (S + T,% + 9,~ + S) B (X, &,p) where 

0,(E n (g-+-‘(x) + h-‘c/-‘(x))) 

=J’ ~_,( 
x 

)(lil + @xGn (g-‘(x’) + h-‘(x’)))d&(x’). 

Composing first then forming the coproduct gives (S,%‘, y) (3 (X, d, p) and 

(T,9,6) ($h,6,) (X, &,p) which gives (S + T,+? + 59,~ + 6) (m) (X, szl, ,u). 

Certainly, &g + h) = 4g + +h. We must show the measures are the same: 

Ox((C + D) n (g-‘4-‘(x) + h-‘4-‘(x))) 

= 
s 

~_,( 
X 
,(Y + G((C + Wn(g-‘(x’) + h-‘(x’)))d&(x’) 

=s ~_,( 
x 
)(‘i + Qc4(C + T) n k-‘@‘I + h-‘(x’))) d&:(x’) 

zzz s ~x~(Cng-‘(x’))d~~L:(x’) + I &(Dnh-‘(x’))d&(x’) 
k’(x) F’(x) 

= yx(Cng-‘~-‘(X)) + &(Dnh-‘4-‘(x)) 
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5.2. Beck condition 

Theorem 5.1. C satisfies the Beck condition. More precisely, given 4 E MOR and 

f and h E Disint, 4*(Cf(h)) 2 C4*Cfj(r*(h)) where g is interpreted as measure 

equivalence. 

Proof. Consider the diagram: 

(-c d: p’) --g (Xv -c4, P) 

g = 4*(f), k = r*(h), so gk = C4*Cfj(r*(h)) and Z=~$*(x~(h)). p and q form a 

measurable isomorphism which respects Z&f, .%“I, yxt, and /?I/ (which implies p and q 

respect y and q since these are disintegrations). By respects, we mean for each x’ EX’, 

&(q-‘(G) n k-‘g-‘(x’)) = yx,(G n I-‘(x’)) and the corresponding equality for p. 0 

First note that p and q already respect (V, 9) and (W, &) (as before, enumerate 

cases). Explicitly, FV={(t,z)Ih(t)=r(z)}={(t,y,x’)Ih(t)=r(y,x’)=y, &x’)=f(y)}, 

V = {(t,x’) I&x’) = j-h(t)}, p(t,x’) = (t, h(t),x’), and q(t, y,x’) = (t,x’). Now, fix 

x’ E X! 

Lemma 5.1. &(q-‘(G) f? k-‘g-‘(x’))= y,l(G n I-‘(x’)). 

Proof. For brevity, we will only check the case when G is a “measurable rectangle”: 

G = I-‘@‘) n u-‘(D). The other calculations are similar. 

j3Xl(q-1(Z-1(A’) n U-~(D)) n k-lg-l(d)) 

= px,(q-lZ-l(k) n g-lrl(D) n k-‘g-‘(d)) 

=I qZ(k-lg-l(A') n S-‘(D) n k-lg-l(x’))dp&) 
s-‘(I’) 

=s 
s_,(x,) 4@ n h-‘(W)) . x~-Q~) dd4 



200 M. A. Wendt I Journal of Pure and Applied Algebra 128 (1998) 185-212 

and 

yJP(A’) n u-‘(D) f-l ZP(x’)) = d~(,~,(D n h-y’(qqx’))) . XA’ 

ZZ 

./ 

&<o f- h-‘(y)) dvw,(y) . XA’. 
f-‘(w)) 

Put a(y) := &(D nh-l(y)), then ,&(. . .) = ~f-,cbv,, a(v) dvw)(y)%v and 

Yd(. . .) = Js-lCx,, a(r(z)) . x~-,(~,) dp,, (z). We must show that the two integrals are the 

same. As usual, we build up the proof by looking at characteristic functions, simple 

functions, and increasing limits of simple functions. The interesting case is the last one. 

Let t,(y) 1‘ u(y). Then &(r(z)) is a sequence of simple functions increasing to a(r(z)) 

(1. t(y) simple 3 t(r(z)) simple: t(y) = ~~=I biXe, * t(r(z>) = cyzl biX,-I(B,) and 

2. t&) T a(y) + &(r(z)) 1‘ u(r(z)): that the limit works is obvious; for increasing, sup- 

pose u(y) > tn(y) U.U. y, then u(r(z)) > tn(r(z)) u.u.z, since Y E m). With these 

facts in mind and using the monotone convergence theorem, 

PJ!(...) = J lim Gz(Y 1 dv+(xq(Y) . XA’ 

f-‘(4(x’)) 

= lim 
s 

m(Y) dvb(,,)(y) . XA’ 
f-‘(w)) 

= lim 
s 

tn(+)) . Xg-‘(A’)dPx’(Z) 
g-‘(1’) 

= 

s 
lim h44z)) . Xg-‘(A’) d/G) 

g-‘(x’) 

=.I 
a(+)) . Xg-‘(A’) d/G) 

g-‘(x’) 

= yx,(. . .). cl 

5.3. Indexed categories 

In Section 3.3, it was noted that we may horizontally paste squares. The Beck 

condition essentially tells us that we may vertically paste squares. As an application: 

for a fixed 6, 4* is a fiurctor. By rearranging the diagram (below, -denotes 

disintegration and denotes MOR) 

w 
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to 

we see immediately how to define q = 4*(p) to get a functor 4*: Disint/X 4 Disint/ 

X! Combining this with l* 2 1 and ($$)* ” I$*$*, there is a pseudo-functor 

( )*:mOp+CAT 

whose object function is X H Disint/X, and so, we get an indexed category DIsInt . 

Remark. (1) If p is merely measurable, then so is q (these are pullbacks in m). 

There is another indexed category (of course, in this case, w and r are merely mea- 

surable as well). 

(2) In the introduction, it was noted that Disint has a “built-in self-indexing”. The 

above makes this vague phrase more precise. 

6. HF/X 

6.1. Preamble 

We have set up substitution machinery for Disint. In this section, we provide an 

application to operator theory. In [6], we began a program to study the direct integral 

of Hilbert spaces (see [2] for exposition) in the context of indexed category theory of 

[4]. Formally, it has a coproduct-like nature and a measure-indexed nature. The idea, 

then, is to use abstract indexing by measure spaces to put this and similar constructions 

on a firm, categorical footing. In essence, we want to interpret the picture 

It seems appropriate, from the point of view of analysis, to have 4 E MOR for 4* 

(there are many reasons for this but, as an example, almost everywhere equality is 

a common occurrence in measure theory and measure zero reflecting functions are 

precisely those which are compatible). To construct a useful generalization of the 

ordinary direct integral St, $ must be a disintegration. A good notion of Hilb,x the 
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category of X-families of Hilbert spaces, must be found (incidentally, Hilbert spaces 

are assumed to be separable). We must reiterate: we do not have classical indexed 

category theory in the sense of [l] or [4] (our base categories MOR and Disint do not 

have products). There are examples to be studied, however, so we wish to approximate 

the situation as best as possible. 

In [6], we put forth the approximation J-I&? =Hilb(MEAS(X)) (i.e., Hilbert space 

objects in a certain sheaf category constructed from a topos). In this section, we provide 

another approximation, essentially the local homeomorphisms idea. First note that the 

correspondence of local homeomorphisms with sheaves in topology does not work for 

measure theory. Indeed, even naively translating topological local homeomorphisms 

to measurable local homeomorphisms (replacing continuous with measurable) leads to 

problems of triviality (see the introductory remarks of [5]). But, an interesting fragment 

can be kept. 

In the next section, we will introduce a category, HF/X, of (measurable) Hilbert 

families over an X E Disint. Essentially, we want a measurable (or measure) space 

over X whose fibres are Hilbert spaces. Before listing the axioms for an HF/X, we 
will end this section by defining the category m/X and describing what should be 

thought of as the complex numbers in HF/X (to provide a motivational example). 

Definition 6.1. Let (X, &, ,u) E Disint be fixed. The category m/X has as objects 

and as morphisms measurable (Y, 37) A (Y’, ~23) which make the evident triangle 

commute (i.e. the slice category but over the space X considered as a measurable 

space). 

Notation 1. We suppress mention of c-algebras and measures if no confusion can 
arise. Furthermore, for space considerations, we sometimes write the objects of slice 
categories sideways. 

A particular object of m/X is (C x X, Bore1 x d) 2 (X,A, p) where p2 denotes 

projection onto the second factor. There is a measurable operation 
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given by x H (0,x) and other operations (defined over X): 

[ll : x + c xx; x H (1,x), 

+ : (C x X) x,y (C XX) + c x x; ((c,x), (c’,x)) H (c + c/,x), 

. : (C XX) xx (C XX) -+ c xx; ((c,x),(c’,x)) t-3 (cc/,x), 

-:cxx-+cxx; (C,X)H(-c,x) 

and 

(-) : c xx + c xx; (c,x) H (2,x). 

With these operations, C x X 3 X is a commutative *-algebra (scalar multiplica- 

tion is the same as multiplication). It satisfies the axiom of non-triviality (see [3]). In 

fact, it is a geometric field (a statement which still makes sense in m/X even though 

it is not a topos). Here, the group of units is U = C \{O} x X + X and [Ol = (0) x X 

and U+O=(C\{O}xX)+({O} xX)?CxX (over X) via ((c,x),l) H (c,x) and 

((0,x),2) H (0,x). Thus, C xX is a geometric field in m/X. 

6.2. HF/X 

An object of HF/X is (Y, 99) 2 (X, d, ,u) E Mble/X subject to three axioms: 

Axiom (a). Y, = f-‘(x) is a separable Hilbert space for each x E X. 

Part of the data for axiom (a) provides us with maps relevant for algebra and 

topology like those for C xX. In more precise terms, we have maps, defined over 

X: X JL Y, [01(x) = 0, E Y,; Y * Y, -(yx) = -1 yx; Y xx Y -L Y, +(y, y’,x) = y sx 

y’;(C xX)xXY i Y,((c,x),y,)=~.~y~; and YXXY (-iT) Cxx,(- I-)(y,y’,x)= 

((y 1 JI’)~,x). These make Y into a C x X-vector space with an Rk” x X-valued norm 

satisfying the parallelogram law. 

Axiom (b). The maps in the above paragraph are all measurable. That is, (Y,a) is a 

(C x X, Bore1 x &)-inner product space in m/X 

Definition 6.2. A sequence in Y is a measurable map over X, N x X =X*(N) -s-t Y. 

Remark. N x X L Y over X is an ordinary sequence of measurable maps X 3 Y 

over X, a positive real, E E R ‘O x X, is a measurable X --% R”, and a natural number 

is a measurable X -% N. 

Definition 6.3. A sequence, s,, is said to converge if there is an s E Y (which means 

a measurable section s : X + Y) such that V&(X) E R’O x X, 3N(x) E N xX such that 

V+r(x) > N(x), II%(x) - sll(x) <a(x). 
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Remark. (1) < and 5 are interpreted as being everywhere as opposed to almost 

everywhere. 

(2) A Cuuchy sequence is defined in a similar manner. Likewise, completeness of 

Y has an obvious definition. 

Completeness of Y is not enough to make substitution work. We will need stability 

under substitution squares: 

Axiom (c). Y is stably complete. 

This means, for all X’ LX f Y, and for all &sequences (i.e. measurable s’s 

such that 

NxX’A Y 

I f 
commutes) &Cauchy (i.e. V&(X’) E R’O x X’, 3N(x’) E N xX’ such that V’n(x’), 

m(x’) > JW’), II S+T) - s~~~~II(&x’)) < 8(x’)) implies @-convergent (with a similar 

definition). 

Remark. (1) 11 II is a measurable function Y -+ R xX over X and for each section 

X 5 Y, llsll is a measurable function X--f R. 
(2) As we shall see below stable completeness implies that each substitution object 

(Z, U), is complete. In particular, the completeness of (Y, g) is a special case with 

b=l. 

Definition 6.4. A morphism of HF/X is a measurable T 

(Y, S) T (Y', 33’) 

\/ 
X 

making the triangle commute such that each T, : Y, -+ Yi is a bounded linear map and 

IIGtlr, is bounded over x E X. 

Remark. There are actually three categories relevant to this work (the first two have 

obvious objects and morphisms): PreHilblX, Complete/X, and HF/X = StablyCom- 
pletejX. 
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We end this section by discussing change of base in relation to Hilbert families. 

A result which we will find useful is: 

Lemma 6.1. Let H be a complete metric space with dense sequence {hi}. Then the 
a-algebra of Bore1 sets is generated by the open balls of rational radius about the 
hi’s. 

Proof. Every open set is a countable union of such open balls. 0 

Let us consider the special case HF/l first. Specifically, we will describe an adjunc- 

tion 

Hilb & HF/l. 
I 

Define I(H) = (H,Borel) i (1,2, counting). Axioms (a) and (b) are satisfied (the 

relevant maps are all continuous so are all Bore1 measurable). 

Proposition 6.1. I(H) satisfies axiom (c). 

Proof. Let 

be a !-Cauchy !-sequence. We claim that s,(x) is pointwise Cauchy for each x. Fix x0 

and let E > 0 be given. Put E(X) = [cl then there is an N(x) such that kz(x), m(m) 2 

N(x), IISn(x)--Sm(x)II < E. Now, let N = N(xa) and p, q 2 N. If we set p(x) = max{ [pl, 
N(x)} and q(x) = max{ [qj ,N(X)}, then p(x) and q(x) are measurable, p(x), q(x) > 
N(x), p(x0) = p, and q(x0) = q, so llsP - sqll < E. And so, S,(XO) is Cauchy. 

Since H is complete, there is an s(x) such that s,(x) -f s(x) for each x. In ad- 

dition, IIs&)II 4 114x)11 since R is complete and 11. II is continuous. The pointwise 

limit in R of measurable functions yields a measurable function. That is, lls(x)ll is 

measurable. But, as a consequence of Lemma 6.1, s(x) is measurable as well (each 

s-‘(B(O,r))=s-‘{hEH I llhll <r} ={xEX I &s(x)ll <r} E& since Ils(x)ll is measur- 

able; then use the measurable translation (= adding a fixed vector) to get other open 

balls). 

To exhibit !-completeness of H i 1, we need only show s,(x) jp,,,,, s(x) + 

s, -+ s in the sense of HF/X, Let E(X) be given. Suppose first that it is constantly E. For 

each X, there is an N such that [Is,(x) - s(x)11 < E for all n 2 N. Put N(x)=min{NI 

Ils,(x) - s,(x)11 < &fn 2 N}. All we need to show is that N(x) is measurable. But 
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N-‘(k) =&\A - k 1 where Ak = u~k{xI Ibdx>s(x>ll < E is measurable. A general E(X) ) 
can be approximated below by simple functions. Apply the above case repeatedly to 

arrive at the inequality for a simple function and hence the inequality for 

a general E. 0 

Remark. In essence, I(H) E HF/l is complete iff it is stably complete. We actually 

have shown one direction for Cauchy and the other direction for convergence but the 

rest is similar. It is important to note that this does not generalize to HF/X, however. 

That is, fibrewise completeness + stable completeness; neither direction holds. (For 

+, we cannot assume s is measurable in general (Lemma 6.1 is special); for -+, 

we cannot take a sequence Cauchy in one, fixed fibre and produce a global Cauchy 

sequence since the fibres “are of global measure zero”, for example, 

&l(x) = 
{ 

~&oh x=x0, 

0 else 

is essentially the 0 function; of course, if x0 is an atom, this works.) For this reason, 

we impose both completeness conditions. Both together are strictly stronger than either 

one separately. 

Proposition 6.2. I is fill. 

Proof. A morphism, H 5 K E m, yields a morphism 

W, B!y,,ore) 

(1,2, counting) 

(2” is continuous so it is Bore1 measurable). Furthermore, a 

( 1,2j counting) 

in HF/l is, in particular, a bounded linear transformation from H to K. 0 

Proposition 6.3. I has a left adjoint F. 

Proof. Axiom (b) for (H, 39) 2 (1,2, counting) says, in particular, 11. II and translation 

are measurable with respect to W, and so, .GJ must contain the Borels. Thus, forgetting 

the measurable structure on (H,.@) provides a left adjoint F to I. q 
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Next, we discuss the general situation. Suppose (X’, JzZ’, ,u’) L (X, d, cl) is in m. 

In 

z,, = g-‘(d) = Y#J) is a Hilbert space. The operations of arithmetic and the inner 

product are measurable when “pulled back” along 4. For example, X’ 3 Z is x’ H OX, = 

Ok which is just the composition of 0~ an 4. For addition, the relevant picture 

is 

zxz )YXY 

z = CX’EX’ yw ) and the measurable +y yields a measurable +Z given by (y,x’) + 

( y’, x’) = ( y +4(X1) y/,x’). For stable completeness, we must show (Z, W) 5 (X/Se’, cl’) 

is $-complete for all X” LX’. Let 

ig. ,f 
X” ------+X’ 

* 9 x 
be a $-sequence in Z. Compose with r to get the 4$-sequence tn = r-s,, in Y Let 

a(~“) E R” XX” be given. Then IIrs,g,p) - rsmcxl,,Ily(c$$(X”)) < E(x”) iff (Is,+~~) - 

sm(x~~,Il~($(~“)) < E(x”) since Z,! = Y4,,/,, so, in particular, Z$(X~,) = Y~$L(~u), and the 

two norms mean the same thing. Thus, s, is $-Cauchy iff tn is &,k-Cauchy and 

similarly for convergence. Since Y is @+kcomplete for all II/, Z is @complete for 

all *. 
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Pulling back a YAY’ in HFjX yields a Z %Z’ in HFIX’. Pseudo-functorial sub- 

stitution restricts to Hilbert families. This discussion provides an important example: 

Example. For each H E m, AZ(H) =(H x X, Bore1 x d) 2 (X, -c4, p) is an object 

of HF/X. These are to be thought of as the constant X-families. A is a fimctor 

Hilb --+ HF/X. 

6.3. Direct integral and HFIX 

S” We next construct the direct integral HF/X - m. For Y E HF/X, define 

s 

@ 
(Y,a) L (X,&,/L) := s :X + Y 1 s measurable, f s = 1 Lx, 

and ll~(x)]/~ dp < oc 
s 

-, 

with s N s’ iff ~{x ] s(x) # s’(x)} = 0. This is sometimes written as 

define: 

s” Y. Furthermore, 

TO1 (xl = 0x9 (-s)(x) = -x4x), 

(c( . s)(x) = CI ‘X s(x). 

(s + s’)(x) = s(x) +x s’(x) and 

With these definitions, s” Y is a C-vector space. 

Remark. If a(x) EL~(X,C), then modifying scalar multiplication to (~1 . s)(x) = 

a(x) .x s(x) makes 5” Y into an L”(X, C)-module. 

Define an inner product on s” Y as 

(4s’) = / Mx)ls’(x)L dp 

which gives a norm IIs]12 = s ~~.r(x)~]~ dp. Since functions which are equal almost 

everywhere are considered equal, ]ls]] = 0 + s = 0. 

Theorem 6.1. J” Y is complete. 

Proof. We mimic the classical proof (see [2]). For II . 112 - Cauchy sequence s,, 

choose a subsequence (also called s,) such that C,“=, /Is,+1 - s,]I < co. In particular, 

c,“=, II%2+l(~)--sn(x)lIx < co for all x $! N where N is some measurable set of measure 

zero. 

For x $N, si(x) + C,“=t(&+i(x) - s,(x)) converges to an s(x) E Y, (yX is a Hilbert 

space) and f o s(x) =x since s(x) E Y,. For x EN, put s(x) = 0,. We must show that 

s(x) is measurable and square integrable. But, s(x) is the limit, almost everywhere, of 
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Q&) := C,“=,(sn+l(4 - &l(x)) each of which is measurable. Furthermore, 

Remark. This is actually get an object of HF/l : (s” Y, Borel). 

For (Y LX) --? (Y ’ LX) in HF/X, define 

s”P/“Y+/‘Y’; s+-+Ts; Ts(x)=T,s(x). 

NOW, T(s + s’)(x) = Q(x) fx Ts’(x) = Ts(x) + Ts’(x) and T(m)(x) = Txc! .x s(x) = 

ct .x Tg(x) = CI . T(s)(x). Since II TxllX is bounded (across x), then 

/ llW)ll: dp = J’ lK4x)ll: dp I / llTxll:b(~)ll: + 5 k s 11Wll: dp < co. 

And so, there is a functor: s” : HF/X -+ J3iJ. 

Remark. J” AH = J” H x X ~X={s:X+HxXIs measurable pzs=l, and 

J &s(x)ll~ dp < co} =L2(X; H) (here we abuse notation and call AH = AZH). 

Let us expand on this remark. L2(X; H) is functorial in H. Given a bounded linear 

map F : H + H’, we get a map, L2(X; H) L%)L2(X; H’), f H](X) = Ff(x). Since, 

F is continuous, Ff(x) is measurable and J llFf(x)lj2 dp < J llT~~2~~f(x)~~2 d,u < 00. 

There is a map H 2 L’(X; H)h H [hl (recall, p(X) < co) which is linear and 

bounded (lIThI = (J llhl12 dp)2 = Ilhl(p(X)“’ so lITI =,u(X)‘i2) and natural in H. The 

natural transformation T is, in general, not an isomorphism (unless X = 1). 

Two interesting properties of A are: 

Proposition 6.4. (a) A(H @K) = A(H x K) = A(H) x A(K) and (b) A(1) = 1. 

Proof. (a) One must simply show that 

HxK-HxKxX- KxX 

\,I/ 
X 

with the evident projections is a product diagram. 

(b) A(l)= 1 xXzX=XL X. 0 
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In view of the fact that 0 = 1 in Hilb (both are the one-point Hilbert space) and 

0 # 1 in HF/X (0 is 8 LOX and 1 is X --X), we have: 

Corollary. A does not preserve 0 and A does not have a right adjoint. 

Note that s” is not left adjoint to A. The unit would be 

H- (j’H)xX 

\ / 

h E H, gets sent to the function in s” H that sends x H h and everything else to 0. 

In the case X is a finite set with counting measure, everything works. But, if points 

have measure zero in X, then the function so described is the 0 map (after modding 

out by a.e. equality) and so there is no injection. 

Also, the counit would be a map L*(X; H) -+ H and given an L2-function, there 

seems to be no canonical way of getting an element of H (we would need some sort 

of “indefinite” integral h = s f(x) dp and a square integrable function is not necessarily 

integrable). 

7. Epilogue 

The question of how to generalize the above to get a $-direct integral seems to be 

quite difficult. We finish with a few remarks on this. Suppose (X’, JzZ’, ,u’) w (X, ~2, .D) 

is a disintegration. For (r, 9) L (X’, ~8, cl’), put 

(i’(i-,9)), := { S: 4-‘(x) ---f T 1s a measurable &section, 

s 
I_, I/&)l12 d&x’) < 00 

where s N S’ iff pi{x’ E &‘(x) ) s(d) # s’(x’)} = 0. Eq uivalently, we could take global 

measurable sections, s :X + T, with the same N. Next, take the coproduct to get 

with p the evident projection. There is no obvious way to put a o-algebra structure, 

93, on Y (exceptions: J,@(T, 9) = (r, 9) and J’(T, 9) = (J’ T, Borel)). Indeed, this 

is an interesting open problem. 
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One idea is to take simply the Borels in each fibre (note: each (JF(T,9)), is 

a Hilbert space). This would be the o-algebra of the infinite coproduct (= disjoint 

union). The problem is that this provides no compatibility across the fibres. Consider 

the example suggested by the picture: 

IIll I I I 1 I 
1 I ’ I 

Each fibre is a Bore1 set. However, these may slide back and forth in a non- 

measurable way to produce a globally non-measurable set. The converse is problematic 

as well: slicing a Bore1 set does not necessarily produce a Bore1 set. 

In some sense, these are function spaces (a special case is L2(X) which would work 

except for the caveat about slicing a Bore1 just mentioned). A related question, and 

another idea, then, is how to put a useful o-algebra structure on a function space. 

Obvious things such as the infinite product structure or the measurable-measurable 
o-algebra (in analogy to the compact-open topology) do not seem to work (we need, 

for example, a more appropriate translation of compact set). 
Our feeling is that disintegrations provide the answer. Some sense needs to be made 

of statements like “d = s cc4y dv(y)“, in the same manner as “,u = s pY dv(y)” and 

in a way that does not conflict with square integrability. Given a measure, we may 

disintegrate along slices. But conversely, given slice spaces and gluing them together 

requires some sort of global compatibility condition. It is possible that this is related 

to the unsolved “existence of (ordinary) disintegration” problem (as a generalization of 

the Radon-Nikodym theorem, one may be interested in the question of when a measure 

space may be disintegrated with respect to another measure space). 

Finally, we make two observations. All this works in &t/X. For this reason, we 

believe this is the correct notion of direct integral in HF/X. The difficult part is putting 

a measurable structure on it. Furthermore, we have not yet been able to employ the 

full power of the substitution machinery of disintegrations. That is, we should also be 

able to put a measure structure on all these entities. This would be part of another 

program: understand the difference between measure theory and topology with respect 

to slicing and indexing. 
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